Función cuadrática: problema

  • Lección
  • Ejercicio

En este intento has obtenido

0

Instrucciones: Lee detenidamente y elige la respuesta correcta.

  • Lee el siguiente problema y responde la pregunta.

    Problema:
    En una carretera hay un túnel que tiene forma de arco parabólico. Tiene 8 metros de alto y su anchura, a nivel de suelo, es de 4 metros. ¿Cuál es la máxima altura que puede tener un camión de 2.5 metros de ancho para poder pasar por el túnel?

    Pregunta:
    ¿Cuál es la solución del problema?
  • Lee el siguiente problema y responde la pregunta.

    Problema:
    En una carretera hay un túnel que tiene forma de arco parabólico. Tiene 8 metros de alto y su anchura, a nivel de suelo, es de 4 metros. ¿Cuál es la máxima altura que puede tener un camión de 2.5 metros de ancho para poder pasar por el túnel?

    Pregunta:
    Si se modela el contorno del arco mediante una función cuadrática, colocando los ejes coordenados de modo que el eje \(y\) coincide con el eje de la parábola y el eje \(x\) sea perpendicular a este y pase por el vértice de la parábola y se usa el metro como unidad, ¿cuál es la función cuadrática?
  • Lee el siguiente problema y responde la pregunta.
    Problema:

    En una carretera hay un túnel que tiene forma de arco parabólico. Tiene 8 metros de alto y su anchura, a nivel de suelo, es de 4 metros. ¿Cuál es la máxima altura que puede tener un camión de 2.5 metros de ancho para poder pasar por el túnel?

    Pregunta:
    Si se modela el contorno del arco mediante una función cuadrática, colocando los ejes coordenados de modo que el eje \(y\) coincide con el eje de la parábola y el eje \(x\) sea perpendicular a este y pase por el vértice de la parábola y se usa el metro como unidad, ¿cuáles de los siguientes puntos están en la parábola?
  • Lee el siguiente problema y responde la pregunta.

    Problema:
    En una carretera hay un túnel que tiene forma de arco parabólico. Tiene 8 metros de alto y su anchura, a nivel de suelo, es de 4 metros. ¿Cuál es la máxima altura que puede tener un camión de 2.5 metros de ancho para poder pasar por el túnel?

    Pregunta:
    Si se modela el contorno del arco mediante una función cuadrática, colocando los ejes coordenados de modo que el eje \(y\) coincide con el eje de la parábola y el eje \(x\) sea perpendicular a este y pase por el vértice de la parábola y se usa el metro como unidad, ¿cuál es el valor del coeficiente independiente de la función cuadrática?
  • Lee el siguiente problema y responde la pregunta.

    Problema:
    En una carretera hay un túnel que tiene forma de arco parabólico. Tiene 8 metros de alto y su anchura, a nivel de suelo, es de 4 metros. ¿Cuál es la máxima altura que puede tener un camión de 2.5 metros de ancho para poder pasar por el túnel?

    Pregunta:
    Si se modela el contorno del arco mediante una función cuadrática, colocando los ejes coordenados de modo que el eje \(y\) coincide con el eje de la parábola y el eje \(x\) sea perpendicular a este y pase por el vértice de la parábola y se usa el metro como unidad, ¿cuáles son los valores de los coeficientes cuadrático y lineal de la función cuadrática?